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Abstract
Numerical results for the local field distributions of a family of Ising spin-
glass models are presented. In particular, the Edwards–Anderson model in
dimensions two, three and four is considered, as well as spin glasses with long-
range power-law-modulated interactions that interpolate between a nearest-
neighbour Edwards–Anderson system in one dimension and the infinite-range
Sherrington–Kirkpatrick model. Remarkably, the local field distributions only
depend weakly on the range of the interactions and the dimensionality, and
show strong similarities except for near-zero local field.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There has been interest in the distribution P(h, T ) of local fields h at temperature T in spin
glasses since the earliest days of their theoretical study [1, 2]. Particularly influential was
Thouless, Anderson and Palmer’s [3] (TAP) self-consistent solution of P(h, T = 0) for the
Sherrington–Kirkpatrick [4] (SK) infinite-ranged spin-glass model for which a mean-field
theory is believed to be exact, albeit unusual and very subtle [5, 6]. Since then there have been
several further studies of P(h) for the SK model (see, for example, [7–10]) and the nature of
the local field distributions is well understood. On the other hand, there has been little work
on the study of P(h) for other spin-glass models. Most notably, few studies exist of P(h) for
the finite-range canonical Edwards–Anderson [11, 12] (EA) Ising spin-glass model which is
generally not exactly solvable. It remains controversial whether some of the specific subtleties
of the SK model are applicable to the EA model and other more realistic models, and their
relationship is far from clear.
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This paper studies and compares numerically the local field distributions at T = 0 of
Ising spin glasses with varying range-behaviour and spatial dimensionality, which are largely
inaccessible to exact solution. We focus our discussion to Gaussian bond distributions of
zero mean. A remarkable and somewhat surprising similarity is found across systems for
which other aspects of the statistical physics state structure are believed to be different, but
with systematic small differences near h = 0 as the system interpolates between the limits of
one-dimensional nearest-neighbour and infinite-ranged mean field, at both extremes of which
P(h = 0, T = 0) is zero in the thermodynamic limit.

The paper is structured as follows. In section 2, we introduce the models studied followed
by brief descriptions of the numerical methods in section 3. Our results are presented in
section 4 followed by concluding remarks.

2. Models

Both the SK model and the EA models are characterized by the Hamiltonian

H = −
∑
i<j

JijSiSj , (1)

where Si ∈ {±1}. The interactions Jij are chosen randomly and independently from a Gaussian
distribution of zero mean and then quenched. In the SK model the sum over i and j extends
over all sites and the variance of the distribution P(Jij ) scales inversely with the system size
N as J 2/N . Here we set J = 1 so that the spin-glass onset transition is at Tc = 1. For the EA
model, the sum over the indices i and j is restricted to nearest-neighbour pairs and the variance
of the bonds Jij is independent of the number of spins N on a d-dimensional hyper-cubic lattice
of size N = Ld ; in this case, unlike for the SK model, the lattice dimension is relevant both
qualitatively and quantitatively. There is universal agreement that the SK model exhibits a
phase transition as the temperature is reduced [13] to a phase with an ultrametric hierarchy of
metastable states and an associated mathematical feature of replica-symmetry breaking of the
overlap order parameter. For the finite-range EA model there is a spin-glass transition above
the lower critical dimension, d > dl , believed [14] to be dl = 5/2, but the existence of an
ultrametric hierarchy in short-range systems is controversial, not proven and disbelieved by
many practitioners.

In order to effectively interpolate between the physics of the SK and EA models and
to probe their similarities and differences we also study a ‘tunable’ model first introduced
by Kotliar, Anderson and Stein (KAS) [16] and recently studied in detail by Katzgraber and
Young [17–20]. The model, which has helped elucidate many properties of spin glasses, is
a long-range Ising spin glass with random power-law interactions. The Hamiltonian of the
model is given by equation (1) but now with the sites i and j on a d-dimensional lattice with
periodic boundary conditions and the exchange interactions given by

Jij = c(σ )
εij

rij
σ
. (2)

Here, rij is the separation of spins i and j, εij are chosen randomly and independently from a
Gaussian distribution of zero mean and standard deviation unity, and c(σ ) is a constant. The
KAS model is believed to interpolate between mean-field-like behaviour for small σ < σc1(d),
an intermediate long-range regime [σc1(d) < σ < σc2(d) ], and a short-range regime
[σc2(d) < σ < σc3(d) = ∞ ]. Each of the latter two regimes are subdivided into ordering
and non-ordering regimes depending upon the space dimension (higher dimensions favouring
ordering); see figure 1. In the present work, we shall consider only d = 1 for the KAS
model, for which case the intermediate long-range region has a finite-cooperative-ordering
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Figure 1. Schematic phase diagram of the KAS model in the d–σ plane following [15]. In this
work, we focus on d = 1 which corresponds to the white horizontal arrow. For σ � 1/2 we
expect infinite-range (IR) behaviour reminiscent of the SK model and where the energy needs
to be rescaled as a power of the system size to avoid divergences, whereas for 1/2 < σ � 2/3
we have mean-field (MF) behaviour corresponding to an effective space dimension deff � 6 (the
thickened line separates mean-field from non-mean-field behaviour). For 2/3 < σ � 1 we have
a long-range (LR+) spin glass with a finite-ordering temperature Tc, whereas for 1 � σ � 2
we have a long-range spin glass with Tc = 0 (LR0). For σ � 2 the model displays short-range
(SR) behaviour with a zero transition temperature [16, 17]. Empirically, for 0.5 � σ � 1 the
d = 1 KAS model can be identified as corresponding to an EA system with effective dimension
deff ≈ 2/(2σ − 1) [13]. Figure adapted from [17].

temperature Tc > 0 for σ < σc but no finite-temperature ordering for σ > σc; see figure 1.
To enforce periodic boundary conditions we place the spins on a ring (see [17] for details)
and choose the geometric distance between the spins, i.e., rij = (N/π) sin(π |i − j |/N). We
normalize the interactions to have T MF

c = 1 for all σ , i.e.,

c(σ )−2 =
∑
j �=i

r ij
−2σ . (3)

For the short-range EA model we study hyper-cubic lattices in different space dimensions
d. Again, in order to assist quantitative comparisons, in all cases we choose the exchange-scale
normalization to yield the same mean-field transition temperature T MF

c = 1. Hence for EA
models we choose the variance of the exchange to be 1/z where z is the coordination number;
for the hyper-cubic lattices that we study z = 2d. In the thermodynamic limit the SK model
is equivalent to the infinite-dimensional EA model; hence, its normalization with the variance
of the exchange interactions scaling as 1/N .

3. Numerical procedures

For the EA model, we apply the extremal optimization (EO) heuristic as described in [21]. EO
provides approximate ground states of spin glasses with high accuracy typically within O(N3)

update steps, at least for system sizes up to N � 256 as studied here for the EA model. We
read off and average the local fields for the presumed zero-temperature configuration found for
each instance. For each reported system, between 104 − 105 instances have been optimized,
depending on system size. Since EO finds near-optima using a far-from-equilibrium dynamics,
the explored configurations may possess a systematic bias. To check that this is not the case we
have applied EO to reproduce P(h) for the SK model (with Jij ∈ {±N−1/2}) for N � 1023,
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Figure 2. Left panel: P(h) for h � 0 for SK systems of sizes N = 15, . . . , 1023 at T = 0. (Here,
a bimodal bond distribution, J = ±1/

√
N , has been used.) Clearly, the curves are well converged

for the larger system sizes. The inset shows an enlargement of P(h) for h near zero. The slopes
are all ≈ 0.3, as indicated by the dashed line. Right panel: P(h = 0) ∼ 0.153(3)N−1/2, i.e., the
data extrapolate to zero in the thermodynamic limit. The low noise in the data suggests that errors
are smaller than the symbols.

as studied in [22], finding no such biases. This is apparent from figure 2, in which familiar
properties (discussed below) of P(h) in the SK model are reproduced, such as the linear slope
for |h| → 0 and the finite-size scaling of P(h = 0) ∼ 1/

√
N for N → ∞.

For the KAS model, we use exchange (parallel tempering) Monte Carlo for the simulations
[23]. To measure the local field distributions we compute 5000 disorder realizations for each
system size N and value of σ . The lowest temperature simulated is T = 0.05 which is close
enough to T = 0 such that for the system sizes studied we effectively probe the ground
state of the system4. We also note that earlier studies of the SK model [8] have shown that
P(h = 0, T ) = λT + O(T 2) with λ ≈ (2πe)−1/2 ≈ 0.25, giving a deviation of ≈ 0.01 for
the SK model at T = 0.05 compared with T = 0, which is indeed negligible compared to the
values we find for small h for finite-range models.

In this study we consider σ = 0.00 (SK), 0.55 (MF), 0.75 (LR+), 0.83 (LR+), 1.00 (σ = d)

as well as 1.50 (LR0) and 2.00 (SR); see figure 1 for details. For all system sizes N and
exponents σ we study NT = 29 replicas. For σ � 1.0 we equilibrate the system for
Nsw = 217 Monte Carlo sweeps for N � 128 and for 220 Monte Carlo sweeps for N = 256.
For 1.50 � σ � 2.0 we again take 217 Monte Carlo sweeps to equilibrate for N � 64 but
increase to 219 Monte Carlo sweeps for N = 128. Then in each case we measure the local field
distributions for the same amount of Monte Carlo time. Equilibration is tested by comparing the
energy calculated from the link overlap to the internal energy of the system calculated directly.
Once both agree, the system is considered to be in thermal equilibrium. For details see [20, 24].

4. Local field distributions

The local field distribution is defined by

P(h) =
⎡
⎣

〈
1

N

∑
i

δ

⎛
⎝h −

∑
j

Jij Sj

⎞
⎠

〉⎤
⎦

av

, (4)

4 Tests have shown that for N = 512, 99% of the time the ground state of the system is probed (not shown—
unpublished results). This number increases for decreasing system size. For example, for system sizes N � 256 all
ground states of 104 trial samples were found.
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where 〈· · ·〉 indicates a thermodynamic average and [· · ·]av denotes an average over the
quenched disorder.

The simplest nontrivial mean-field solution for P(h) for the SK or EA models, the replica-
symmetric [4, 11, 25] effective field approximation, yields P(h) self-consistently through

P(h) = 1√
2πq

e−h2/2q, q =
∫

dhP (h) tanh2(βh), (5)

where β = 1/T is the inverse temperature. However, this approximation incorrectly yields a
hole in P(h) as T → 0 [25], i.e., P(h) = 0 for all |h| < (2/π)1/2.

Indeed, Thouless, Anderson and Palmer [3] argued already in 1977 that for small fields
h in the SK model P(h, T = 0) ∼ 0.3|h|, linearly in |h|.5 Later studies of the SK model,
employing full replica symmetry breaking (FRSB) [26], have borne out this linear form and
the value of its slope (see, for example, figure 2 and [8, 10, 27]). Through accurate studies of
a large sequence of finite-replica-symmetry breakings, references [9, 10] have demonstrated
that within replica theory the correct linear behaviour of P(h) for the SK model requires the
full limit of infinite replica-symmetry breaking order; any finite-order truncation yielding a
fictitious (if decreasing with RSB order) hole in P(h) near h = 0.

Another model that is exactly solvable is the one-dimensional nearest-neighbour random-
exchange Ising chain (limit of the KAS model for σ 
 1), the one-dimensional EA model
[8, 28]. It does not, however, have either frustration or a finite-temperature phase transition
and, thus, no spin-glass phase. P(h) is given by

P(h) =
∫

dJP(J )P(h + J ) {1 − tanh[βJ ] tanh [β(h + J )]} , (6)

with

P(J ) = 1√
π

e−J 2
, (7)

such that 〈J 2〉 = 1/2. For β → ∞, this evaluates to

P(h) = 2

π
|h|

∫ 1

0
dx e−h2(2x2−2x+1), (8)

again giving P(h = 0) = 0 and a linear small-h behaviour, analogously to the SK model, but
with a slope almost twice as large, i.e., P(h) ∼ 2|h|/π .

In higher dimensions the EA model is not exactly solvable. There is no finite-temperature
spin-glass phase in d = 2, although there is such a phase [31] in d = 3 and greater. Yet, it
is not clear that the glassy phase for d � 3 exhibits the characteristics of replica-symmetry
breaking (e.g., ultrametricity) found in the SK model; at least up to an upper critical dimension
believed to be ducd = 6. We have performed a numerical simulation of P(h) for the EA model
using the EO heuristic [21]. The results are exhibited in figure 3. (Since P(h) is symmetric,
we only show plots for h � 0, i.e.,

∫ ∞
0 P(h) dh = 1/2.) At first sight P(h) at T = 0 shows

very little variation between the dimensions d; the overall shape is quite similar to that for the
SK model, see figure 4. But, in fact, at closer detail there is a notable distinction for h → 0,
where the behaviour for the EA model differs significantly from the SK model. Unlike for
the SK model (see figure 2), P(h = 0) appears to be finite in the thermodynamic limit of
the EA model, as the plot near h = 0 in the bottom panels of figure 3 indicate. We have
extrapolated the values of P(0) to infinite system size L in figure 5. For each d � 2, whether
above or below the lower critical dimension, P(0) quickly settles to a positive value between

5 Actually, in [3] the authors give a bound on the coefficient but also express the belief that this bound should be
saturated.
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Figure 3. P(h) for h > 0 for the EA spin glass on hyper-cubic lattices for d = 2, 3 and 4 for
various side-lengths L for a Gaussian bond distribution with 〈J 2〉 = 1/(2d). Already beyond some
small L, there is little distinction between P(h) for different sizes, indicating only small corrections
to scaling. This becomes even more apparent in the insets, showing an enlargement of the data
near h = 0. P(h) in each d seems to converge to a finite value at h = 0 of P(h = 0) ≈ 0.065
(d = 2), P(h = 0) ≈ 0.055 (d = 3) and P(h = 0) ≈ 0.045 (d = 4), see figure 5. P(h) for
small |h| rises with a slope of a ≈ 0.25 (d = 2), a ≈ 0.23 (d = 3) and a ≈ 0.23 (d = 4), where
P(h) ∼ P(0) + a|h|.
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Figure 4. P(h) for h > 0 for the EA spin glass in d = 2, 3 and 4 dimensions and for the SK
model, all at comparable system size N = 216, . . . , 256 for bond distributions with 〈J 2〉 = 1/z,
where z is the connectivity of each spin: z = 2d for the EA model and z = N − 1 for the SK
model. Also plotted is the exact d = 1 result from equation (8). The plot highlights the overall
similarity in P(h) for all models and space dimensions. Except for |h| close to zero, the numerical
data for the EA model in d = 2–4 overall seem to interpolate monotonically between the d = 1
result and the SK (d = ∞) model. Yet, while P(0) = 0 for both d = 1 and SK, for d = 2–4, P (0)

is positive and monotonically decreasing, see figure 5.
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Figure 5. Extrapolation of the values for P(0) obtained for d = 2, 3 and 4 in figure 3 for various
system sizes L. The extrapolation to the thermodynamic limit L → ∞ proceeds on a scale of
1/Ld−y , where y for each d is the stiffness exponents discussed in [14]. As P(h) has units of
inverse energy, these are the appropriate corrections to scaling for the EA model [29, 30]. Clearly,
P(0) > 0 for each d at L → ∞, unlike for the SK model. The noise in the data suggests errors to
be about double the size of the symbols.

approximately 0.04 and 0.07. This value seems to decrease slowly with increasing space
dimension d, consistent with P(0) = 0 in the SK (d = ∞) limit; see figure 13. P(h) − P(0)

rises linearly for small h with a weakly d-dependent slope of a ≈ 0.23–0.25.
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Figure 6. P(h) for h > 0 and different system sizes N for the KAS model in d = 1 for different
powers of the exponent σ which change the effective space dimension. The data are for the lowest
temperature simulated, T = 0.05. The insets show an enlargement of the area around h = 0.
P(h = 0) clearly converges to a finite value for all σ > 0.5 and shows an approximately linear
behaviour [P(h) − P(0)] ∼ 0.3|h| for small |h|. Note that the corrections to scaling decrease
considerably for larger σ values.

We have performed a similar set of simulations for the d = 1 KAS model for a range
of different σ values covering different behaviours ranging from SK-like to finite-range non-
ordering (Tc = 0) [17]. In figure 6, we show the local field distributions for T = 0.05 for
different system sizes N. Each panel is for a different exponent σ in equation (2). The similarity
of all data sets for different σ is clearly visible. The insets show always the area around h = 0
in detail. To further illustrate the similarities between the data sets, in figure 7 we show data
for P(h) for N = 128 and different exponents σ covering all possible universality classes.
The data for all σ agree relatively well, with the data for σ > 1.0 showing a more pronounced
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Figure 7. Direct comparison of the local field distribution P(h) (at T = 0.05) as a function of the
local field h for the KAS model and N = 128 spins and different values of the exponent σ covering
all possible universality classes from infinite range to short range with zero transition temperature.
Also plotted are the exact results for d = 1 (i.e., σ → ∞) from equation (8) and the SK data (i.e.,
σ = 0) from figure 2 (both at T = 0). As in figure 4, the data interpolate smoothly between both
extremes, except at P(0).

peak and larger gap. Again, for the different values of σ > 0.5 studied, [P(h)−P(0)] ∼ a|h|
for |h| small with a ≈ 0.3 interpolating between the SK and the short-range one-dimensional
result6.

We have also extrapolated the data for P(h = 0, T ,N) to T = 0 (fits to a quadratic
function for T � 0.3 with fitting probabilities [32] larger than ∼ 0.3). A typical example
of the extrapolation for σ = 0.83 is shown in figure 8 (the behaviour of P(h) for different
temperatures is shown in figure 9). Since the difference between T = 0.05 and T = 0
is minimal and because estimating the error bars for the extrapolated data is difficult, in
figure 10 we show data for T = 0.05.

A closer look at figures 7 and 10 poses an interesting question: in the KAS model, P(0)

appears to be an increasing function of σ for all values studied so far, rising from P(0) = 0 at
σ = 0 for SK to P(0) ≈ 0.08 at σ = 2.0. Yet, the exact result for the one-dimensional Ising
chain, corresponding to σ = ∞, again has P(0) = 0. Hence either the apparent extrapolation
to the limit N → ∞ limit, shown in figure 10, is incorrect and P(0) = 0 for all σ after
all, or there has to be a maximum in P(0) at some finite σmax beyond which P(0) again
descends to zero. To decide this question, we have done a more extended study of P(0) also
for σ > 2.0 which is shown in figure 11. The results clearly show a well-defined maximum
near σmax ≈ 1.8, which is likely to persist in the thermodynamic limit. The resolution of
this question—surprising in its own right—strengthens our belief that finite-size effects in
our presentation are well under control. In all, the KAS model essentially reproduces the
results found for the SK and canonical EA models for σ � 1, where it corresponds to possible
physical dimensions and for larger σ (where the formula deff ≈ 2/(2σ − 1) [13] becomes
inappropriate) it continues smoothly towards the nearest-neighbour d = 1 EA limit. The fact
that P(0) peaks for the KAS model at a value of σ intermediate between that corresponding to

6 It has been shown [38] that system sizes of N � 200 are needed to probe the thermodynamic limit of the KAS and
SK models. The local field distributions P(h) show small corrections to scaling and thus the system sizes studied in
this work should suffice.
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Figure 8. P(h = 0) as a function of temperature for σ = 0.83 and N = 256. The data are
well fit by a linear behaviour in T (with very small quadratic corrections) with slope ≈ 0.25 for
T � 0.3. Data for T = 0.05 are very close to T = 0 (arrows), which is why in figure 10 we
extrapolate to N = ∞ for T = 0.05 and not T = 0. Furthermore, the estimate of the error bars in
the temperature extrapolation is difficult. Inset: P(h = 0) for a range of σ compared with the SK
result (2πe)−1/2T .
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Figure 9. P(h) for σ = 0.83 and N = 128 for different temperatures ranging from T = 0.05 to
temperatures well above the transition temperature Tc. For low enough T the local field distribution
shows a dip around h = 0 which is ‘filled in’ for increasing temperatures. For T 
 Tc we obtain
a Gaussian distribution.

deff = 2 and deff = 1 suggests that if one could continue the EA model off integer dimensions,
there might exist a dimension dmax, likely between d = 1 and d = 2 at which P(0) would
peak. The slope of [P(h) − P(0)] near h = 0 is however found to vary monotonically with σ

between the SK (σ = 0) and nearest-neighbour EA (σ = ∞) limits.
The local field distribution P(h) for a disordered Ising spin system with Gaussian

distributed random exchange disorder is thus seen to be remarkably robustly linear in |h| at low
h with a coefficient in the range a = 0.25–0.35, irrespective of whether the system exhibits
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Figure 10. Extrapolation of the values for P(0) obtained for the KAS model as a function of
1/

√
N for T = 0.05 and different values of the exponent σ . The data for σ = 0.00 decay with

a power-law similar to the SK model. For larger values of σ the data indicate a saturation to a
finite value of P(0) for N → ∞. Larger system sizes would be needed to clearly differentiate
the different scenarios beyond a qualitative comparison. The noise in the data suggests an error of
about five times the symbol size. For comparison we also show the data for SK at T = 0 from
figure 2; note that the shift compared with the σ = 0 KAS results is due to the finite-temperature
shift (2πe)−1/2T .
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Figure 11. Plot of P(0) as a function of σ in the KAS model. For each data point in N = 32
and 64 averaged P(h) over at least 105 instances, 2104 instances at N = 128, and at least 103

for N = 256. (The data for N = 256 clearly show a systematic bias only near the maximum,
indicative that those instances are hardest to optimize. Note the complete lack of residual finite size
effects for σ > 2.0.) To obtain smooth estimates of P(0), independent of the width of histograms
chosen to measure P(h), we made a linear fit to the respective P(h) for h < 0.3 to obtain each
data point. Inset: Plot of the slope a = ∂P (h)/∂h|h→0 of P(h) near h = 0 as a function of
σ , extracted from a fit to the same data. Only data for N = 256 are shown, as there are hardly
any finite size effects. 2/π (solid line) represents the slope for the one-dimensional result in
equation (8) obtained for σ → ∞.
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Figure 12. Local field distribution P(h) for the EA model in d = 2, 3 and 4, obtained after purely
relaxational single-spin dynamics on 104 instances for each L and d. The same system sizes L as
in figure 3 have been used here but finite-size effects are well below the statistical noise. We have
added results for d = 7 (L = 3) to show that there are no drastic changes above the upper critical
dimension ducd = 6. The dashed line merely serves to guide the eye. Inset: P(h) for relaxational
single-spin dynamics in SK.

spin-glass order and independent of whether such spin-glass order is replica-symmetry-broken
mean field or not.

It is also interesting to compare with studies of a non-equilibrated SK model [33–35]. In
these studies, spins are initially randomized and then exposed to purely relaxational single-
spin dynamics, i.e., dynamics in which spins are chosen randomly and flipped if and only
if such a flip would reduce the energy, until a metastable state is reached. The distribution
P(h) averaged over only those metastable states reached by this procedure is again linear
in |h| for small h with a slope that again appears to be of order a ∼ 0.3. The interest of
this observation in the present context is that the metastable states reached in this dynamical
procedure are not the ground state. Indeed they are significantly above the ground state, with
the average relaxational energy variously reported as Erelax/N ≈ −0.7 [34], − 0.715 [33] and
−0.73 [35], much higher than the ground-state energy per spin Egs/N = −0.7632 [10], while
the corresponding P(h,Erelax) averaged over all metastable states has a finite value at h = 0
[33, 34].

We have conducted a comparable study of P(h) over metastable states reached by rapid
quench for the EA model in d = 2, 3, 4 and 7, and SK, as shown in figure 12. As for the
results for the SK model, there are significant (qualitative) similarities between the T = 0
equilibrium results of P(h) in figure 3 and those obtained by simple relaxation. But especially
the behaviour near h = 0 deviates quantitatively, with P(0) distinctly larger and the initial
slope significantly smaller. Yet, both seem to tend smoothly towards the corresponding SK
result P(0) = 0 (see figure 2 and [33, 34], respectively) for d → ∞, as is demonstrated in
figure 13. Furthermore, for small |h| the local field distribution shows a linear behaviour as
found in [36] via an intrinsically far-from-equilibrium simulation along the hysteresis loop
of the model for finite external fields. Finally, as in [33, 34], the metastable states obtained
under relaxation in the EA model are substantially more energetic than the ground states. For
instance, in d = 3 relaxation gives a normal distribution of states of mean Erelax/N ≈ −1.4
and a deviation of approximately 0.1, whereas the ground states found at L = 6 are centred
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Figure 13. Extrapolation of P(0) towards the SK-limit, d → ∞. Shown are the values of P(0)

obtained from the L → ∞ extrapolation in figure 5 for ground states of the EA model (full circles)
and those obtained by a relaxation process of the data shown in figure 12 (full diamonds), which
are approximately L-independent. Added are the data points for SK for ground states from figure 2
(open circles) and for relaxation from figure 12 (open diamonds). As the EA spin glass approaches
the SK model by setting 2d = N − 1 → ∞, the appropriate scale here is (2d)−1/2 ∼ N−1/2,
according to the right panel of figure 2. Asymptotic slopes for the SK data are 0.153(3) for ground
states and approximately 0.61 for relaxation (see also [35]). For both sets of data, it seems that
limd→∞P(0) → 0, consistent with the respective SK results. Similar to the case of σ > 0.5 in
figure 11, there is no indication here that P(0) = 0 for any d < ∞.

just above Egs/N ≈ −1.7, with a much narrower deviation and close to the thermodynamic
value of −1.700(1). [37]

Finally in this section, let us return to figure 8 now concentrating on the gross
T-dependence. This figure demonstrates another robust feature, the linearity of P(h = 0, T )

with T up to the mean-field transition temperature TMF = 1; this result previously observed
in the SK model [8] is seen from the main figure to hold well also for the KAS model with
σ = 0.83, even though the actual transition temperature in this case is much smaller than
the mean-field temperature (indeed it is closer to Tc = 0.45 [20]). As shown in the inset, a
similar behaviour is found for other values of σ (up to the order of the peak in figure 11), the
higher of which have no finite-temperature phase transition. Thus again the general shape of
P(h = 0, T ) − P(h = 0, T = 0) is rather robust against whether the system is one which
orders or not, has RSB or not.

5. Conclusions

We have presented results for the local field distributions of different spin-glass models in
different space dimensions. These include both cases where there is generally believed
to be a finite-temperature phase transition and others where no finite temperature transition
occurs. They also include cases where the subtleties of replica symmetry breaking are believed
to operate and others where they do not occur or are in question. Our results show that the
distributions of local field are qualitatively very similar for all models with Gaussian-distributed
interactions; the data for P(|h|, T = 0) decay exponentially for large fields |h| and show a
linear behaviour for |h| close to zero. The distributions only show differences in behaviour near
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T = 0 and h = 0 where for the infinite-range SK model P(h = 0, T = 0, N) ∼ N−1/2 → 0
as N → ∞, while all other finite-dimensional Edwards–Anderson spin-glass models studied
with space dimensions d > 1P(h = 0, N) seem to tend to a constant in the thermodynamic
limit. For finite d the thermodynamic value of P(0) scales as d−1/2 for low d with a coefficient
very close to that for the SK model, taking 2d = N − 1 to match coordination number for
spins in EA and SK, see figure 13. This suggests that d−1/2-scaling applies for all d.7

These observations are mirrored by simulations of a one-dimensional Ising model
with random power-law interactions: for the regime of the power-law exponent σ which
correspond to an infinite-ranged system, P(h = 0) decays with an inverse power of the
system size, whereas for all other universality classes the distributions tend to a constant in
the thermodynamic limit, rising from zero in the limits of both SK σ = 0 and the unfrustrated
nearest-neighbour σ = ∞, with a maximum for σ near 2. Furthermore, for all σ the
P(h = 0, T ) are all close to the same linear-T behaviour for T < TMF = 1.

Qualitatively similar, but quantitatively different, small-hP (h) behaviour is also found
for systems that are quenched from random starts (to states that are not thermodynamically
equilibrated).

Our study has been concerned with the case of Gaussian exchange distribution. For
problems with discrete distributions, such as for Jij randomly ±J one expects P(h = 0, T =
0) to be nonzero for finite-range systems [8]. It is, however, surprising how small the observed
P(h = 0, T = 0) are for Gaussian exchange disorder without being zero. This effectively
counsels against associating small P(0) and simple small-h slopes with the subtleties of RSB
or finite-temperature spin-glass transitions8.

Finally, we should caution that the simulations were performed for finite system sizes and
although corrections to scaling seem to be very small, a change in behaviour at larger system
sizes cannot be ruled out completely.
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